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Abstract
A finite element simulation for surface contact stresses of gear teeth is presented. The derivation of 
finite element equations based on elastic large deflection. Main outlines for a finite element solution 
algorithm and software are given for this purpose, due to stability and measuring accuracy problems an 
existing finite element-package is used. In this study five positions along the contact line are 
considered to evaluate the contact stress on the pinion and wheel teeth. The influence of speed ratio and 
ratio of Young's modulus of the pinion are considered during the investigation. Found that the 
maximum shear stress is the beginning and the end from contact point, therefore the design life 
calculations of the gear tooth should be based upon these points instead of the pitch point of contact 
stress in the systemic design calculations. Values of the depth with shifting depended upon the position 
of contact point along the pressure line. 

Keywords: Spur gear, Contact ratio, Contact stress, FEM 

Introduction 
 Predict the stresses and deformations when the surfaces of two solid bodies are brought into 

contact, subject to the surface of constraints. Solids touching each other are deformable at 

one or the more points. 

Shiferaw Damtie and Daniel Tilahun [1]. Studied the coefficient of friction and its effect on 

contact stress by using both FEM and Hertizian stress formula. Where it was found that the 

higher the coefficient of friction, the contact stress increases. Ali Raad Hassan [2] use the 

finite element method for the contact stress analysis, different contact positions at the two 

spurs gears. Keer LM and Bryant MD [3] studied apply fracture mechanics to pit formation 

mechanisms. They found that the pitting phenomenon strongly depends on the contact 

surface. Rao et al. [4] used the FEM for contact stress analysis in mating gears. Research aims 

for reduced both contact stress and deformation. Zhai [5]. Derived the contact stress on the 

tooth surface by using contact theory. Using FE simulation analysis, the contact stresses are 

calculated of the tooth surface. Flasker et al. [6] a new model is the described to simulate the 

surface stress process in contact of the area for the spur gears. SIVAKUMAR et al. [7]. Used 

the numerical analysis to find contact stress with bending stress for gears and pinion by using 

ANSYS. Hertz’s equations are used to analysis contact stresses. Narayankar and Mangrulkar 
[8] Derived the bending and contact stresses by using Hertzian and Lewis equations. Abbasi 

et al. [9] A new strategy for seamless two dimensional contact surface representation and 

implementation has been developed. Balaji et al. [10]. Examined the contact stress by using 

Hertzian equation. Through numerical analysis, both contact and bending stresses are 

calculated using the ANSYS program. Results from the theoretical analysis are compared to 

the results for FE analysis. Glodez et al. [11] studied a two-dimensional of the computational 

model to the simulate the surface, which resulted in the growth of fatigue cracks in the 

contact area of the tips of the gear teeth resulting in surface pitting. Selvam et al. [12] Studied 

and developed the bending stress under a spur gear pair by using both the theoretical and FE 

analysis methods. Xiaoyn Lei [13] presented a simple interface element for analyzing contact 

friction problems developed in this work. Francvilla and Zienkiewicz [14] Presented for 

simple procedure for the obtaining elasticity matrices in terms of the contact pressure for the 

potential contact points of two bodies. Glodez et al. [15]. The two-dimensional computational 

model has been studied, and it has been limited to the modeling of high-precision mechanical 

components. 
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Finite element method theory 
The FE methods are techniques for approximating the govering differential equations for a continuum with a set of algebraic 

equations relating a finite number of variables.  

 

State of stress 

For the stresses in the internal point of the body for 3D analysis is given as by: 
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Where stress components must satisfy of the following equilibrium of equations through the interior of the body. 
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 Where , ,x y zF F F  are body forces of components per unit volume and for 2D problems, the Z components vanish. 

 

State of strains and displacements boundary conditions 

State of the strains at the point inside of loaded body is given by as following: 

 

  (5)
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Strain-displacement relations from the small deflection theory are:  

 

(7)
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If u  denotes the portion for the boundary surface on which the displacements are prescribed. Displacement constraints are:  

 

, , (10)u u v v w w     
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Where , &u v w  are prescribed values and u is part of total boundary. 

  

Stresses and strains relations 

Linear elastic of the materials stresses-strains relations can be deduced from the generalized Hooke's law. Isotropic 

homogenous materials. Elemental cube inside of the body Hooke's law given as: 
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 The shear modulus G is given as: 

 

(15)
2(1 )

E
G





 

 

From Hooke's law relationships the equations (11),(12),(13) and (14), note that: 
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Substituting the  y z   and the equations (11),(12),(13) and (14), the inverse relations are obtained: 

 

 * (17)D    

 

 D : Symmetric (6*6) material matrix given as: 
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For plane stress problems, where 0z xz yz     , Hooke's law of the relations equations (11),(12),(13) and (14) is 

reduced to: 
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Inverse relations are given as: 
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Which using as: 

 

 *D   

 

Principle of the virtual works 

For the body in the equilibrium under external loading , , ,x y zF F F  body forces, , ,.......x yP P  external forces , ,..........x y xy    

internal stresses if the body is displaced from its equilibrium position virtually by , ,u v w    virtual displacements, the 

body forces, external forces and internal forces do certain amount of the virtual works. According to principles of the virtual 

displacements total virtual work done by internal forces (due to stresses) 
DW  equal for virtual work done by external and body 

forces 
EW . 
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The three dimensional form equation (21) is  
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and in the matrix form  

 

. . . . . . (23)T T Tdvol F u dvol P u ds         
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Equation (23) can be restated as: 

 

. . . . . . 0 (24)T T Tdvol F u dvol P u ds       
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 The first term of the equation (24) can be recognized of the variation for strains energy U  with second term as the variation of 

work done due to incremental displacements U . If the work done is also expressed as a potential ,W  then the equation (24) 

can be written as: 
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Where  

 : is the potential energy 

 Total potential energy for element.  
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But    
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By applying minimum total of potential energy principle to equation (28), the following can be proved:  
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Where 
eK  is the bracketed term in equation (29) 

Since for two-dimensional case  B  is independent of z, then 
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t: the element of the thickness in z-direction. 
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Algorithm for establishing contact 

Curved boundary that can be represented in terms of n-nodded boundary element, as used in boundary element technique as: 
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 Where &j jX Y are nodal coordinates of boundary nodes used to define general curved boundary,   is the intrinsic coordinate 

along the boundary and    are the lagragian shape functions. 

Let the normal vector from a point  ,i iX Y  meet the curved boundary of the point  0 0&X Y  then: 
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Where 0 0 0, ,X Y   are unknown of the parameters. 

The derivatives of X and Y with the respect to   at  0 0,X Y  can be written as following: 
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Where   & m are directions cosines of outward unit normal vectors at  

 0 0&X Y

 

 

Boundary conditions implementation: If a node i contact the rigid surface for the point  0 0&X Y , then useful to write 

stiffness equations for that node in terms of normal and tangential components for that the point. 

Let direction cosines of normal to the rigid curved surface at  0 0&X Y  be, & m . Then the displacement components along 

the normal and tangent direction are: 

 

  (35)
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And therefore the stiffness matrix is 

 

    (36)
T

Q gK Q K Q      
 

 

Where  Q  is the rotation matrix, as in eq. (35) 

 

Results and Discussion 

In this study a poinion with 24 teeth or 36 teeth and with wheel of 36 teeth is considered. The moduls is taken equal to 12mm. 

The material of the pinion is hardening steel 20 MnCr5 [according to DIN 17210] with the following material properties: 

Young of modulus = 3 2210*10 /N mm   

Poisson's of ratio =0.3 
21000 1300 /ult N mm     

2700 /y N mm    

 

The finite element mesh problem shown in the figures (1), where 451 element of 4-node solid are employed with either using 

contact element number 48 or target element 169 with contact element 171.  

The boundary conditions for the pair of teeth are given in figure (1), where 
1( )  is a part of boundary of the investigated 

domain condition, and all the nodes are constrained in R and    axes i.e. all the nodes lying in this boundary have 

0UR U  , while the nodal forces are unknown 
2( )  represents the loaded boundary condition where an external force of 

250N is applied to each of the mesh nodes at the boundary 
2( ) . The effect of inertia force due to acceleration or deceleration. 

Referring to figure (2) pinion with center at 
1O  is driver and turns counter clockwise. Pressure or generating line is same as the 

cord used to generate the involute, and contact occurs along this line. 

The initial contact will take place when the flank of the deriver comes into contact with the tip of the driven tooth. This occurs 

at point 1C  in figure (2) where the addendum circle of the driven gear crosses the pressure line. As the tooth goes into mesh, 

the point of contact will slid up the side of the driving tooth so that the tip of the driver will be in contact just before contact 

ends. The final point of contact will, therefore, be where the addendum circle of the driver crosses the pressure line. This is 

point 
5( )C  in figure (2). The two end points are considered in the analysis as well as other three points which are points 

2C  

point 
4C  and a pitch point 

3C  as indicated in figure (3) 

The material of the wheel is taken either similar to the poinion's material or is assumed to be very rigid. The main dimensions 

of the investigated teeth are shown in figure (4) and the geometry of the gear tooth is generated using (AUTOCAD) package, 

where an exact geometrical relationships (shown in appendix A) are used. 

The speed ratio is equal to 1.5 and the Young's modulus of the wheel to the pinion is taken as 
1 2/ 1,0.8E E  .  

This table is for no-load sheering conditions. i.e. for contact ratio equal to one which is the extreme case. For the actual case 

when the contact ratio is greater than unity. The load sheering condition is presented and the highest value of the shear stress 

will be at the beginning and ending of single pair contact, that means 
2 4& .C C  

 
Table 1: Shows the position of maximum shear stress 

 

Contact point Maximum xy Mpa Depth w mm Shifting S mm 

1C  889.78 0.5 0.63 

2C  345.64 0.87 0.96 

3C  327.04 0.94 01.15 

4C  324.04 0.83 1.12 

5C  507.68 0.1 0.42 

  

Table 1 gives value of the maximum shear stress and location of the sub-surface points, i.e. the depth (w) and shifting (S) 

maximum shear stress from the loading point ( )P . 
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Table 2: Shows the position of maximum shear stress 
 

Contact point Maximum 
xy Mpa Depth w mm Shifting S mm 

1C  864.02 0.1 0.28 

2C  338.3 0.68 0.99 

3C  320.5 1.36 1.26 

4C  323.61 1.28 1.14 

5C  474.31 0.1 0.24 

 

Tables 3& 4 show the values of the maximum shear stress, its depth and shifting from the contact point. From table 3&4 it is 

clear that the maximum depth of the maximum shear stress is at the pitch point. Whilst the minimum value of the maximum 

shear stresses is at that point. Effluence of 1/ 2E E  ratio to the maximum shear stresses is at point C5, is the clear that value of 

the maximum shear stress for 1/ 2 1E E   is 1265 Mpa and it is reduced to 913.98 Mpa for 1/ 2 0.8E E  . Therefore it is 

recommended to use 1/ 2E E  less than 1 to improve the maximum shear stresses distribution with the pinion teeth, providing 

that other design requirements are not affected. 

 
Table 3: Shows the position of maximum shear stress 

 

Contact point Maximum 
xy  Mpa Depth w mm Shifting S mm 

1C  664.5 0.31 0.54 

2C  406.7 0.5 0.84 

3C  382.58 0.47 0.97 

4C  443.1 0.6 0.74 

5C  1265 0.25 0.31 

 
Table 4: Shows the position of maximum shear stress 

 

Contact point Maximum 
xy  Mpa Depth w mm Shifting S mm 

1C  660.4 0.35 0.56 

2C  413.8 0.44 0.87 

3C  386.1 0.57 0.99 

4C  555.2 0.54 0.8 

5C  913.98 0.24 0.4 

 

 
 

Fig 1: The FE mesh & boundary condition 
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Fig 2: Tooth action 

 

 
 

Fig 3: Investigated contact position along the pressure line 
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Fig 4: Shows the main dimension for the spur gear 

Figure (5.a) shows the shear stress contour at the beginning of contact (i.e. point 1C ). Clear that shear stress in pinion is the 

greater than wheel, this is due to that the radius of curvature of the pinion surface is very small compared to the wheel radius 

of the curvature. Maximum shear stress is 889 Mpa at point 
*P . Depth equal to 0.5mm from surface and it is shifted by 

0.63mm to left of the loaded point P .  

 

 
 

https://www.engineeringpaper.net/


International Journal of Research in Engineering  https://www.engineeringpaper.net 

~ 14 ~ 

a) Shear stresses contours 
 

 

 
b)Equivalent Von Mises stresses 

 

Fig 5: Stress contours at 1
st

 point ( 1C ) of contact (m=12, speed ratio 1.5, 1/ 2 1E E  . 
 

Figure (6.a) shows the contact stress results at contact point 2C  along the pressure line. Maximum shear stress is equal to 345.6 

Mpa and it is at the sub-surface of the wheel material by 87 mm. It is unexpected that maximum shear of stress is at the wheel 

tooth instead of the corresponding pinion tooth. There is great symmetry in the equivalent stress, as indicated in figure (6.b).  

 

 
Shear stresses contours 
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Equivalent Von Mises stresses 

 

Fig 6: Stress contours at 2nd
 point ( 2C ) of contact (m=12, speed ratio 1.5, 1/ 2 1E E  . 

 

Conclusions 

A finite element simulation for surface contact stresses of gear teeth is presented. The derivation of the finite element 

equations is based on elastic large deflection. The main outlines of a finite element solution algorithm and software are given 

for this purpose, due to the stability and measuring accuracy problems an existing finite element-package (ANSYS) is used. In 

this study five positions along the contact line are considered to evaluate the contact stress on the pinion and wheel teeth. The 

influence of speed ratio and the ratio of Young's modulus of the pinion are considered during the investigation. It is found that 

the maximum shear stress is at the beginning and the end of contact point, therefore the design life calculations of the gear 

tooth should be based upon these points instead of the pitch point of contact stress in the systemic design calculations. 

1. For high value of  1/ 2E E I.e. for rigid wheel and elastic pinion, the point of maximum shear stress appeared in pinion tooth 

for all contact positions along the pressure line. From the view point of design, it is very important to increase the Young's 

of the pinion material compared to that of the gear, such that to reduce the property of subsurface failure. 

2. For using nearly the same materials for the pinion and the wheel or for the case of Young's modulus of the wheel is 

greater than the Young's modulus of pinion. The maximum shear stress and equivalent Von Mises stress appeared in both 

wheel and pinion teeth. At the beginning of contact the maximum stress is at the pinion tooth and the maximum 

equivalent Von Mises is at the wheel tooth. At the ending of contact the maximum equivalent Von Mises is at the pinion 

tooth. 

3. When the speed ratio is increased maximum shear of stress is reduced for all the values of ratio  1/ 2E E . This is due to the 

fact the contact stress values have indirect proportionality with the radius of curvature of the contact surface. 

4. It is found that the speed ratio has no influence on maximum shear of stress distribution along path of the contact. 
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