
~ 32 ~

International Journal of Research in Engineering 2025; SP-7(2): 32-36

E-ISSN: 2664-8784

P-ISSN: 2664-8776

IJRE 2025; SP-7(2): 32-36

© 2025 IJRE

www.engineeringpaper.net

Received: 15-04-2025

Accepted: 16-05-2025

Veena Beniwal

Assistance Professor, M. Tech.,

Department of CSE, DPG

Degree College, Gurugram,

Haryana, India

Renuka Chauhan

Assistance Professor, M. Tech.,

Department of CSE, DPG

Degree College, Gurugram,

Haryana, India

Correspondence

Veena Beniwal

Assistance Professor, M. Tech.,

Department of CSE, DPG

Degree College, Gurugram,

Haryana, India

Two-Days National Conference on Multidisciplinary Approaches for

Innovation and Sustainability: Global solution for contemporary Challenges-

NCMIS (DPG Degree College: 17
 th

-18
th

 2025)

Relational database design based on the entity-

relationship model

Veena Beniwal and Renuka Chauhan

DOI: https://www.doi.org/10.33545/26648776.2025.v7.i2a.88

Abstract
The Entity-Relationship (E-R) model is often endorsed for use in the database design process because
its concepts seem to be both natural and easy to use. This paper describes a methodology for the design
of a relational database based on the E-R model. The procedure starts with the identification of the
basic E-R constructs that occur in an application resulting in an preliminary database design. Next,
ways of arresting certain semantics of an application through data abstraction and events for identifying
probable design problems are discussed. It is commonly known as an ER Diagram. An ER Diagram
in DBMS plays a crucial role in designing the database. Today’s business world previews all the
requirements demanded by the users in the form of an ER Diagram. Later, it's forwarded to the
database administrators to design the database. The Entity Relational Model is a model for classifying
entities to be represented in the database and representation of how those entities are interrelated. The
ER data model requires enterprise schema that signifies the overall logical structure of a database
graphically. In particular, the approach enables transformations of the imaginative ER model by Chen
as well as prevalent extensions. We have proven the applicability of this approach in two ways: First,
we have created a graphical editor capable of compliantly modeling ER diagrams and automatically
transforming them to relational models. Second, we have conducted a practical study with our
methodology and the created editor. Our findings show, that the transformation approach works
correctly and the executed editor makes it accessible to users.

ER modelling is based on two perceptions.

● Entities, defined as tables that hold explicit information (data).

● Relationships, defined as the relations or interactions between entities.

Keywords: Database design, entity-relationship model, relational model, database; editor

Introduction
The Entity-Relationship (E-R) Model is often used as a tool for communication between a

designer and an end-user of a record because of its ease of use and its suitability in

representation. According to Brodie, the popularity of the E-R model for high level design is

due to its economy of concepts and belief in entities and relations as natural showing

concepts. This paper presents a organization for relational database design based on the E-R

model. It provides both a step-by-step process and various guidelines for a good design. The

procedure consists of first recognizing the main constructs of the E-R model - entities and

relationships- and their associated attributes. Rules are provided for selecting primary keys

from candidate keys and for capturing some of the semantics of the application through data

abstractions. This results in an Entity-Relationships model of the application. Most of these

approaches have two major weaknesses: First, they often impose certain constraints on the

ER models and second, they remain rather theoretic. In many cases, after giving their

approach, the authors recommended them to be used by practitioners or in automatic tools.

Despite having a clear formalism, a practical implementation was not ever achieved, often

due to the lack of operational semantics. On the other hand, there is a high numeral of editor

tools for ER models, contained in drawing tools, in client software of databases, low-code

platforms, or in modeling implements like enterprise architect.

https://www.engineeringpaper.net/
https://www.doi.org/10.33545/26648776.2025.v7.i2a.88

International Journal of Research in Engineering https://www.engineeringpaper.net

~ 33 ~

History of ER models
Peter Chen (a.k.a. Peter Pin-Shan Chen), presently a faculty
member at Carnegie-Mellon University in Pittsburgh, is
credited with developing ER modeling for database design
in the 1970s. While serving as an assistant professor at
MIT’s Sloan School of Organization, he published a seminal
paper in 1976 titled “The Entity-Relationship Model: Near a
Unified View of Data.”
In a broader sense, the depiction of the interconnectedness
of belongings dates back to least ancient Greece, with the
works of Aristotle, Socrates and Plato. It’s seen more
recently in the 19th and 20th Century works of philosopher-
logicians like Charles Sanders Peirce and Gottlob Frege.
By the 1960s and 1970s, Charles Bachman (above) and
A.P.G. Brown were working with close predecessors of
Chen’s approach. Bachman established a type of Data
Structure Diagram, named after him as the Bachman
Diagram. Brown published works on real-world systems
modeling. James Martin added ERD enhancements. The
work of Chen, Bachman, Brown, Martin and others also
contributed to the development of Integrated Modeling
Language (UML), widely used in software design.

Database Design
Database design can be defined as the process of capturmg
relevant information and processing desires of an enterprise
and mapping them onto an underlying database management
system. The database design process can be divided into
four phases.
1. Requirements specification.
2. Conceptual design.
3. Logical design; and.
4. Physical design.

1.1. Requirements specification
The first phase of the database process is the requirements
specification phase through which an analysis is made of the
information needs within an organization resulting
preliminary specification of the information requirements of
several user groups.

1.2. Conceptual design
The conceptual design phase models and represents the
users' and applications' views of information and, possibly, a
description of the processing or use of the information. The
Objective of this phase is to produce a high-level
representation of the requirements independent of the
Database Management System which will be used. This
high-level representation is called a conceptual schema or
conceptual design It is regularly expressed as an
Entity-Relationship (E-R) model or a semantic data model.

1.3. Logical design
During the logical design phase, a logical design (or
schema) that corresponds to the data model of the selected
DBMS is produced; for example, a relational data model.
This step implementation design because it represents the
revolution of the conceptual schema into the logical schema
of the DBMS.

1.4. Physical design
Physical database design transforms the logical design into a
form that is suitable for the given hardware and database
management system it plans the logical schema into a
Suitable stored representation, and determines the physical
parameters necessary to optimize the database performance
against a set of required transactions.

1.5. Scope

This paper provides a step-by-step methodology for the

development of a conceptual model, communicated as an

Entity-Relationship model, and its transformation into the

logical design of a relational database management system.

Why Use ER Diagrams In DBMS

● ER diagrams represent the E-R model in a database,

creating them easy to convert into relations (tables).

● ER diagrams serve the purpose of real-world modeling

of objects which makes them attentively useful.

● ER diagrams require no technical knowledge of the

fundamental DBMS used.

● It gives a standard solution for visualizing the data

logically.

Symbols Used in ER Model

ER Model is used to model the logical view of the system

from a data perspective which consists of these symbols.

● Rectangles: Rectangles represent entities in the ER

Model.

● Ellipses: Ellipses represent attributes in the ER Model.

● Diamond: Diamonds represent relationships among

Entities.

● Lines: Lines represent attributes to entities and entity

sets with other relationship types.

● Double Ellipse: Double ellipses represent multi-valued

Attributes.

● Double Rectangle: Double rectangle represents a weak

entity.

Table 1: Symbols used in ER Model

Figure Symbol Represents

Rectangle

Entities in E-R Models

Ellipse

Attribute in E-R Models

Diamond

Relationship among Entities

International Journal of Research in Engineering https://www.engineeringpaper.net

~ 34 ~

Line
 Attribute to Entities set and entities

and Relationship

Double Ellipse

Multi-Valued Attribute

Double Rectangle

Weak-Entity

Entity, Entity Set and Entity Type

An entity is a piece in the real world with an independent

existence that can be differentiated from other objects. An

entity might be

● An object with physical existence (e.g., a lecturer, a

student, a car).

● An object with theoretical existence (e.g., a course, a

job, a position).

Entities can be classified based on their strength. An entity

is considered weak if its tables are existence dependent.

● That is, it cannot occur without a relationship with

another entity.

● Its primary key is derived from the primary key of the

parent entity.

● The Spouse table, in the COMPANY database, is a

weak entity because its primary key is needy on the

Employee table. Without a corresponding employee

record, the spouse record would not exist.

An entity is considered strong if it can exist apart from all of

its related entities.

● Kernels are strong entities.

● A table without a foreign key or a table that contains a

foreign key that can contain nulls is a strong entity.

Another term to know is entity type which defines a

collection of similar entities.

An entity set is a collection of entities of an entity type at a

particular point of time. In an entity relationship diagram

(ERD), an entity type is represented by a name in a box. For

example, in Figure 8.1, the entity type is employee.

Fig 1: ERD with entity type Employee

Existence dependency
An entity’s existence is dependent on the existence of the

related entity. It is existence-dependent if it has a mandatory

foreign key (i.e., a foreign key attribute that cannot be null).

For example, in the COMPANY file, a Spouse entity is

existence -dependent on the Employee entity.

Kinds of Entities

You should also be aware with different kinds of entities

including independent entities, dependent entities and

characteristic entities. These are described below.

Independent entities

Independent entities, also referred to as kernels, are the

strength of the database. They are what other tables are

based on. Kernels have the following characteristics.

● They are the structure blocks of a database.

● The primary key may be simple or composite.

● The primary key is not a foreign key.

● They do not depend on another entity for their

existence.

If we refer back to our COMPANY database, examples of

an independent entity include the Customer table, Employee

table or Product table.

Dependent entities

Dependent entities, also mentioned to as derived entities,

depend on other tables for their meaning. These entities

have the following characteristics.

● Dependent entities are used to connect two kernels

organized.

● They are said to be existence dependent on two or more

tables.

● Many too many relationships become associative tables

with at smallest two foreign keys.

● They may contain other attributes.

● The foreign key identifies each associated table.

● There are three options for the primary key.
1. Use a composite of foreign keys of associated tables if

International Journal of Research in Engineering https://www.engineeringpaper.net

~ 35 ~

unique.
2. Use a composite of foreign keys and a qualifying

column.
3. Create a new simple primary key.

Characteristic entities
Characteristic entities provide more evidence about another
table. These entities have the following characteristics:

● They represent multivalued attributes.

● They describe other entities.

● They typically have a one to many relationship.

● The foreign key is used to add identify the
characterized table.

● Options for primary key are as follows.
1. Use a composite of foreign key plus a succeeding

column
2. Create a new simple primary key. In the COMPANY

database, these might include.

● Employee (EID, Name, Address, Age, Salary) - EID is
the simple primary key.

● EmployeePhone (EID, Phone) - EID is part of a
composite primary key. Here, EID is also a foreign key.

Attributes in the ER Model
In the ER model, an attribute is a characteristic or property
of an entity that describes some phase of the entity. For
example, in a database of employees, an attribute of the
"Employee" entity might be "name," "email," or "salary."
There are numerous types of attributes, including?

 Simple attribute? An attribute that has a single value
for a given entity or relationship. For sample, a person
entity might have a simple attribute called "name".

 Composite attribute? An attribute that is made up of
multiple simple attributes. For example, a person entity
might have a composite attribute called "address" that is
complete up of simple attributes such as "street", "city",
"state", and "zip code".

 Single-valued attribute? An attribute that can only
have one value. For example, a person entity might
have a single-valued attribute called "gender" that can
only have the values "male" or "female".

 Multi-valued attribute? An attribute that can have
multiple values. For example, a person entity might
have a multi-valued attribute called "hobbies" that can
have multiple standards such as "reading", "running",
and "cooking".

 Derived attribute? An attribute that is derived from
other attributes or entities. For example, a person entity
might have a derived attribute called "age" that is
calculated from the person's date of birth.

 Null attribute? An attribute that has no value. This can
occur when an attribute is elective and not all entities
have a value for that attribute. For example, a person
entity might have a null attribute called "middle name"
if not all people have a middle name.

Relationships in the ER Model
In the ER model, a relationship is a connection between two
or more entities. For example, in a database of employees,
there might be a relationship between the "Employee" entity
and the "Department" entity, representing the statistic that
each employee belongs to a department.
There are three types of relationships in the ER model: one-
to-one, one-to-many, and many-to-many.

● A one-to-one relationship is a relationship between two
entities where each entity can be associated to at most
one instance of the other entity. For example, in a
database of employees, there might be a one-to-one
relationship between the "Employee" entity and the
"Employee Contact Information" entity, as each
employee can have only one set of connection
information.

● A one-to-many relationship is a relationship between
two entities where an instance of the first entity can be
related to multiple instances of the second entity, but an
instance of the second object can be related to only one
instance of the first entity. For example, in a database of
employees, there is a one-to-many relationship between
the "Employee" entity and the "Project" entity, as an
employee can work on multiple projects, but a project
can have only one lead employee.

● A many-to-many relationship is a relationship between
two entities where an instance of the first entity can be
related to multiple instances of the second entity, and
vice versa. For example, in a database of employees,
there might be a many-to-many relationship between
the "Employee" entity and the "Skill" entity, as an
employee can have multiple skills, and a skill can be
controlled by multiple employees.

How to create an Entity - Relationship Diagram
ERDs are generally represented in one or more of these
models.

● A conceptual data model, which lacks specific detail
but provides an indication of the scope of the project
and how data sets relate to one another.

● A logical data model, which is more detailed than a
conceptual data model, showing specific attributes and
relationships among data points. While a conceptual
data model does not need to be designed before a
logical data model, a physical data model is based on a
logical data model.

● A physical data model, which offers the blueprint for a
physical manifestation -- such as a relational database --
of the logical data model. One or more physical data
models can be established based on a logical data
model.

There are five elementary components of an entity
relationship diagram. Similar components will be designated
by the same shape. For example, all entity types potency be
enclosed in a rectangle, while all attributes are enclosed in a
diamond. The components include the following:
1. Entities, which are objects or conceptions that can have

data stored about them. Entities refer to tables used in
databases.

2. Attributes, which are properties or characteristics of
entities. An ERD attribute can be represented as
a primary key, which identifies a unique attribute, or
a foreign key, which can be assigned to several
attributes.

3. The relationships between and among those entities.

4. Actions, which define how entities share information in

the database.

5. Connecting lines.

Limitations of ER diagrams and models

● Only for relational data: Understand that the persistence

International Journal of Research in Engineering https://www.engineeringpaper.net

~ 36 ~

is to show relationships. ER diagrams show only that

relational structure.

● Not for unstructured data: Unless the data is cleanly

delineated into different fields, rows or columns, ER

diagrams are possibly of limited use. The same is true

of semi-structured data, because only some of the data

will be useful.

● Difficulty assimilating with an existing database: Using

ER Models to integrate with an existing database can be

a challenge because of the dissimilar architectures.

Conclusion

To sum up, attributes and relationships are key components

of Entity-Relationship (ER) modelling, which is used to

design and characterize the data structures of a database.

Attributes are characteristics or properties of an entity,

relationship, or another attribute, and can be simple or

merged, single-valued or multi-valued, derived or null.

Relationships are connections or associations between

entities and can be one-to-one, one-to-many, or many-to-

many.

Together, attributes and relationships form a thorough and

accurate representation of the data in a system, making ER

modeling a useful tool for database design and management.

References

1. Batlm C, Lenzen M, Navathe SB. A comparative

analysis of methodologies for database schema

integration. ACM Comput Surv. 1986;18(2):323-364.

2. Blaha MR, Premerlani WJ, Rumbaugh JE. Relational

database design using an object-oriented methodology.

Commun ACM. 1988;31(4):414-427.

3. Potter WD, Kerschberg L. A unified approach to

modeling knowledge and data. In: Meersman RA,

Sernadas AC, editors. Data and Knowledge (DS-2).

Amsterdam: North-Holland; 1988. p. 265-291.

4. Shaw M. The impact of modeling and abstraction

concerns on modern programming languages. In:

Brodie ML, Mylopoulos J, Schmidt JW, editors. On

Conceptual Modeling. Berlin: Springer; 1984. p. 19-47.

5. Smith JM, Smith CP. Database abstractions:

aggregation and generalization. ACM Trans Database

Syst. 1977;2(2):105-133.

6. Storey VC, Goldstein RC. Design and development of

an expert database design system. Int J Man Mach Stud.

7. Castellanos M. Semantic enrichment of interoperable

databases. In: Proc IEEE RIDE-IMS. 1993.

8. Chen P. The Entity-Relationship model—towards a

unified view of data. ACM Trans Database Syst.

1976;1(1):9-36.

9. Connolly T, Begg C, Strachan A. Database systems. 1st

ed. Boston: Addison-Wesley; 1999.

10. Davis F. Requirements specification: objects, functions,

and states. Englewood Cliffs (NJ): Prentice-Hall; 1993.

11. Dos Santos CS, Neuhold EJ, Furtado AL. A data type

approach to the Entity-Relationship model. In: Proc 1st

Int Conf on Entity-Relationship Approach to Software

Engineering. 1980.

12. Kim W, Choi I, Gala S, Scheevel M. On resolving

schematic heterogeneity in multidatabase systems.

Distrib Parallel Databases. 1993.

13. Larson J, Navathe S, Elmasri N. A theory of attribute

equivalence in databases with application to schema

integration. IEEE Trans Softw Eng. 1989;15(4):449-

463.

14. Miller R. Using schematically heterogeneous structures.

In: Proc ACM SIGMOD Int Conf. 1998.

15. Melton J, Simon AR. SQL:1999—Understanding

relational language components. San Francisco:

Morgan Kaufmann; 2002.

16. Goh C, Bressan S, Madnick S, Siegel M. Context

mediation: new features and formalisms for the

intelligent integration of information. Sloan Working

Paper 3941. 1997.

17. Pressman R. Software engineering. New York:

McGraw-Hill; 1997.

18. Rumbaugh J, Jacobson I, Booch G. The unified

modeling language reference manual. Boston: Addison-

Wesley; 1999.

19. Song WW, Johannesson P, Bubenko JA. Semantic

similarity relations in schema integration. In: Proc 11th

Int Conf on the Entity-Relationship Approach. 1992.

20. Li WS, Clifton C. Semantic integration in

heterogeneous databases using neural networks. In:

Proc 20th VLDB Conf. 1994.

21. Sciore E, Siegel M, Rosenthal A. Using semantic

values to facilitate interoperability among

heterogeneous information systems. ACM Trans

Database Syst. 1994;19(2):254-290.

22. Thalheim B. Entity-relationship modeling: foundations

of database technology. Berlin: Springer; 2000.

23. Pressman R. Software engineering. New York:

McGraw-Hill; 1997.

24. Rumbaugh J, Jacobson I, Booch G. The unified

modeling language reference manual. Boston: Addison-

Wesley; 1999.

25. Song WW, Johannesson P, Bubenko JA. Semantic

similarity relations in schema integration. In: Proc 11th

Int Conf on the Entity-Relationship Approach. 1992.

26. Li WS, Clifton C. Semantic integration in

heterogeneous databases using neural networks. In:

Proc 20th VLDB Conf. 1994.

